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Do plant photoreceptors act at the membrane level?

By J. A.RAvEN
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, U.K.

All of the photoreceptors involved in the absorption and transduction of light energy in
photosynthesis are integral (carotenoid, chlorophyll) or peripheral (phycobilin) mem-
brane proteins. The informational photoreceptors (phytochrome) and the flavoprotein
(carotenoprotein?) cryptochrome, could be integral (carotenoprotein, flavoprotein)
or peripheral or soluble (phytochrome, flavoprotein) pigment-protein complexes.
The primary activity of the informational photoreceptors is unlikely to involve ener-
gization of primary active transport: the solute fluxes produced in this way would
not form a quantitatively significant link in the perception-transduction-response
sequence. By contrast, regulation of mediated solute fluxes at the plasmalemma
could effect a substantial amplification of the absorbed photon signal, i.e. a large
change in moles of solute transported could result from the absorption of 1 mol of
photons. Modulation of the passive influx (or active efflux) of protons or calcium ions
at the plasmalemma are likely targets for regulation by photoreceptors. Calcium flux
regulation is particularly attractive in view of the ubiquity of calmodulin activity in
eukaryotes, although problems could arise in maintaining the uniqueness of phyto-
chrome messages vis-d-vis cryptochrome messages. Temporal analysis of the relation
between photoreceptor changes and electrical effects resulting from changes in ion
fluxes cannot, in general, rule out the involvement of intermediates between the redox
or conformational change in the photoreceptor and the observed change in ion flux.
Although slow in terms of the potential rate of change on solute fluxes resulting from
direct interaction of a photoreceptor and a solute porter, the observed rates of signal
transduction are well in excess of any obvious ‘need’ on the part of the plant in terms
of rates of response to environmental changes.
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1. INTRODUCTION

The explicit or implicit hypothesis underlying much recent work on photoperception by
plants requires that membranes are involved at an early stage in the perception—-transduction—
response sequence (Marmé 1977; Raven 1981; Senger 1980). It is to these stages in photo-
perception that this paper is addressed, with particular emphasis on the possibility that trans-
membrane fluxes of solutes are early and essential events in the photoperception process. The
analysis of the close temporal (and spatial?) coupling of light absorption and solute transport
requires some discussion of both the nature of the photoreceptors and the sorts of transport
systems with which they could interact. Particular emphasis will be placed on the distinction

between direct (within a protein, or protein—protein) and indirect interaction in coupling
photon absorption to changes in solute fluxes, and to the distinction between energetic and
informational coupling of light absorption to solute fluxes. In addition to the permissible ‘if’
and ‘how’ of membrane involvement, the paper finally addresses the less widely acceptable
question of why membranes are involved in photoperception in plants.

THE ROYAL
SOCIETY

The discussion will centre mainly on oxygen-evolving photolithotrophs, and on the role of
pigments other than the main photosynthetic pigments; however, these restrictions will not be
rigidly adhered to when important results or hypotheses have originated from work on other
organisms.
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406 J. A.RAVEN

2. PROPERTIES AND LOCATION OF PHOTORECEPTORS

Almost all of the protein-associated chromophores that have visible absorption bands have
been implicated at some time or other in the perception of light by plants. Table 1 shows some
of the characteristics of pigment—protein complexes that are known to be, or may be, involved
in photoperception. All of the chromophores have high specific absorption coefficients, thus
making them effective photon absorbers at their respective absorption maxima. The lifetime
of the excited singlet state varies with the environment of the chromophore, but is uniformly
short for carotenoid and retinol pigments; despite this, the carotenoids can act as photo-
sensitizers (Song 1980). The carotenoids and phycobilins seem to have no usable photoredox
activities, unlike the rest of the pigments listed in table 1. The retinol-protein complexes are
distinguished by their capacity to carry out (when membrane-associated) active proton trans-
port apparently unrelated to internal redox reactions. Conformational changes related to
photon absorption are widespread among the pigment—protein complexes.

Table 2 gives some information on the location of the major classes of pigment—protein
complexes in cells, distinguishing between ‘soluble’, ‘ peripheral to membrane’ and ‘integral
in membrane’, as well as differentiating between the N and the P sides of the membranes
(Singer 1974; Mitchell 1979). The carotenoproteins and retinoproteins are all integral mem-
brane proteins, as are the Mg porphyrin-proteins; the flavoproteins and Fe porphyrin-proteins
have a more catholic distribution, with different representatives of the two classes occurring
as integral, peripheral and soluble pigment—protein complexes. The phycobilins, and phyto-
chrome, are peripheral or soluble; the categories are not rigid, an example being the occurrence
of phytochrome as both a soluble and a membrane-peripheral entity.

We shall see in § 3 that some integral membrane proteins can function as catalysts of solute
transport across the membrane in which they occur: if these proteins are associated with a
chromophore, then photon absorption by the chromophore could give a direct informational or
energetic coupling to transport within a single polypeptide. In all other cases, a less direct
coupling between photon absorption and solute transport must be envisaged, involving the
direct transfer of excitation energy or conformational energy from the photoreceptor protein
to the porter (by protein—protein interaction), or some less direct interaction involving inter-
mediates between the photoreceptor and the porter.

3. PORTERS AND THEIR RELATION TO PHOTORECEPTORS

If photoreceptors influence transmembrane transport of solutes as a ‘primary’ event, this
must involve catalysed (mediated) transport. The timescale (106 to 102s) of these primary
events is too short for any substantial synthesis or degradation of membrane components. This
constraint rules out the modulation of ‘lipid solution’ transport of solutes through the lipid
portion of the membrane as a mechanism of the primary action of photoreceptors. Transport of
a neutral solute (such as carbon dioxide or oxygen) by ‘lipid solution’ can be described by

Joe = P(Go—Cy),

where J, is the net solute flux from phase o to phase i (mol m~2s1) through a membrane

whose permeability coefficient for the solute is P(m s~!) when the concentrations of the solute

in phases o and i respectively are C, and C; (molm~3). Since P for a given solute is determined, at
[ 60 ]
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a given temperature, by the lipid composition of the membrane, short-term effects of light on
Joe must reflect changes in C, or C, or both, and cannot be construed as reflecting a membrane
effect on the flux J,, although the changes in C, or C; could be products of some other membrane
effect of the photoreceptor. An example is light absorption by chlorophyll in the thylakoid
membrane, which, by generating NADP and ATP, leads to net carbon dioxide fixation and
thus to a net influx of carbon dioxide across the plasmalemma.

N phase membrane P phase
(e.g.cytoplasm) (e.g.plasmalemma) (e.g. medium)
energy input
as ATP,redox,
or light
ol H ' primary > of+
active uniporter
+
9H " - - 2H
O < H': CI” symporter cr-
K+ < K" passive K"
uniporter

Ficure 1. Examples of primary active transport (ATP-powered H* flux from N to P phase) with H+ recirculation
coupled to the secondary active transport of CI~ from P to N phase, and electrically driven mediated passive
uniport flux of K+ from P to N phase.

Thus primary effects of light on solute transport must be sought in mediated fluxes of solutes,
catalysed by intrinsic (transmembrane) protein porters. Figure 1 shows, for a case in which
the proton is the working ion, primary active, secondary active, and mediated uniport processes.
Light can act as energy source for primary active transport, so that a primary effect of light
could be in energizing active transport (the term ‘primary event’ is taken to be the first detect-
able obligatory event in the perception-transduction-response sequence, other than the pro-
duction of the excited state of the chromophore and its return to the ground state). Light could
also have informational effects on the activity (i.e. the specific reaction rate of the porter under
constant conditions of substrate supply) of any of the three kinds of porter. We note that, as
with ‘lipid solution’ transport, changes in the driving forces acting on the solutes that are being
transported (i.e. the chemical activity difference for the transported solute(s) between the two
sides of the membrane and, for charged solutes, the electrical potential difference across the
membrane) and changes in the free energy available from chemical driving reactions of primary
active transport (e.g. increased free energy of ATP hydrolysis under conditions iz vive) cannot
be construed as primary effects of light.

Table 3 indicates some of the ways in which the photoreceptors mentioned in tables 1 and 2
could influence, by energetic or regulatory means, the rate of solute transport as a primary

[ 61]
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action of the photoreceptor. By far the best understood of the various couplings of photon
absorption to transmembrane fluxes are the energetic couplings of the bacteriorhodopsin-
halorhodopsin and the chlorophyll-bacteriochlorophyll systems (see references in table 3). The
analysis of these processes has been aided by the relative ease with which the relevant mem-
branes can be extracted and purified, and the large fraction of the membrane protein that
consists of the pigment—protein complexes; these factors greatly facilitate the investigation of
both the photophysical and photochemical (and the transmembrane flux) aspects of the primary
action of light. The much more ‘dilute’ nature of membrane-associated phytochrome or of
flavoprotein (see table 2 of Raven (1981), and § 44) means that any primary effect of solute
transport is less readily investigated; other experimental problems with these two systems will
be noted as the discussion proceeds.

4. QUANTITATIVE CONSTRAINTS ON PHOTORECEPTOR ACTION AT MEMBRANES

The two main groups of constraints with which I shall deal are those related to the density of
photoreceptors and porters in (or on) membranes, the stoichiometry between photons absorbed
and molecules of solute transported by an associated porter and thus to the relation between
incident photons and transmembrane solute flux, and the problems of temporal analysis of the
relation between photon absorption and solute transport, which is crucial to determining if the
effect on solute transport is a primary action of the photoreceptor. It is important to note that
such constraints as the low density of photoreceptors on membranes, or the long time taken to
complete a photochemical cycle, which are found with phytochrome for example, and not
intrinsic to photoreceptors, but are specialities of some of the informational, as opposed to the
energetic, photoreceptors (Birge 1981).

(a) Density and specific reaction rates of porters and photoreceptors

Raven (1981) has attempted to relate the density of photoreceptors in (or on) membranes,
by means of the specific absorption coefficients of the photoreceptors, to the rate of photon
absorption per unit membrane area at a given incident photon flux density. Table 2 of Raven
(1981) shows that the density of pigment molecules in the thylakoid membrane (chlorophylls
plus carotenoids plus, where they are present, the phycobilins on the membrane) is some
2-3 pmol m~2, while that of flavoprotein at the plasmalemma is some 2.5 nmol m~2%, and that
of phytochrome at the plasmalemma is only some 0.33 nmol m~2 even if all of the cell phyto-
chrome is associated with the plasmalemma. To illustrate the magnitude of fluxes which could
be achieved at various photon flux densities if these photoreceptors were to energize active
transport, I shall take the hypothetical case of a stoichiometry of 1 photon absorbed for each
1 proton transported for primary active proton transport. The assumed stoichiometry is
mechanistically rather than thermodynamically constrained, in that there is much more
energy per mole of photons (some 180 kJ mol~! in the red region of the spectrum, and 260 kJ
mol—1in the blue region) than is required to pump one mole of protons from an N to a P phase
(typical minimum energy requirements of 20-30 kJ mol-1) (see Raven & Smith 1980).

Raven (1981) computed that, with an incident photon flux density of 500 pmol m—2s-1 at
the wavelength of maximum absorption by the pigment, the flavoprotein and phytochrome
densities mentioned above would give proton fluxes of 4.0-4.5 nmol m—2 s~1, the similarity of
the two fluxes in the face of the different density per unit membrane area being explained by

31 Vol. 303. B
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410 J. A.RAVEN

the compensating differences in specific absorption coefficient (see table 1; also Raven 1981).
These values are some four orders of magnitude lower than the proton fluxes at the same
incident photon flux density in thylakoid membranes. In all cases, however, I have assumed
that photon absorption rate determined the proton flux; in reality this is unlikely to be true at
an incident photon flux density of 500 pmol m~2 s~1, and the proton flux across the thylakoid
membrane is likely to: be restricted to some 5 pmol m~2 s~ by limitations in the reoxidation
rate of reduced plastoquinone (Raven 1980; Raven & Smith 1980). For phytochrome the
restrictions on the ratio of photons absorbed to protons moved are likely to be less severe, in that
the absence of a ‘ phytochrome unit’ analogous to ‘ photosynthetic units’ means that each photon
absorbed by phytochrome is used independently rather than being transferred to reaction
centres present at some 1 per 400-500 chlorophylls for each of the two photoreactions; however,
if energization by phytochrome involves the full P.~P;—P, cycle, I would envisage a specific
reaction rate of some 0.83 protons moved per phytochrome molecule per second (see §46) rather
than the 12.7 s~1, corresponding to a flux of 4.1 nmol m—2s~1. Accordingly, the flux might be
reduced to 0.27 nmol protons m—2 s,

Substantial photobehavioural or photomorphogenetic responses occur at a photon flux
density of 1 pmol m~2 51 at the wavelength of maximum absorption of the photoreceptor; here
the proton fluxes are reduced to 8.2-8.6 pmol m—2s—! at the plasmalemma for phytochrome and
flavoprotein, while the thylakoid proton flux would be some 60 nmol m~2s-1. The context in
which all of these fluxes should be viewed is that of the ‘background’ proton recirculation (cf.
figure 1) at the eukaryote plasmalemma of 1 pmol m~25s-1, and an irreduceable minimum of
uncatalysed ‘leak’ plus mediated ‘slippage’ downhill proton fluxes at biological membranes
of some 10-20 nmol m~2 s~! (Raven 1980; Raven & Smith 1980; Raven & Beardall 1981, 1982;
Richardsonetal. 1983). Itisvery unlikely that the cell could distinguish between the light-powered
proton fluxes of some 10 pmol m~2 s~! at a photon flux density of 1 pmol m~2 s from the ‘back-
ground’ proton flux of up to 1 pmol m—2s-1: it is very likely that such small photoreceptor fluxes
of protons would be lost in the noise associated with the background fluxes. However, it is still
possible that photoperception of the informational (as opposed to the energetic) type could result
from photons absorbed by a photoreceptor having active transport as their primary action.
The ciliate Stentor coeruleus uses the pigment—protein complex stentorin (with a hypericin-like
meso-naphthodianthroquinone chromophore) as photoreceptor for its photophobic response
(Wood 1970, 1973, 1976 ; Walker et al. 1979, 1981 ; Song et al. 1980). It is possible that the primary
action of this chromoprotein is the energizing of active proton transport into cortical vesicles
whose bounding membranes contain the stentorin (Walker et al. 1981). This possibility is sup-
ported by the large amount of stentorin present in the ciliate: the references cited above suggest
that Stentor coeruleus contains some 0.2 mol m—3 of stentorin (specific absorption coefficient
5 x 103 m® mol-! m~1), which permits 10 %, of the maximum photophobic response to be ex-
hibited at an incident photon flux density of 0.5 pmol m~2s~! of ‘red’ light. Thus a photo-
behaviour photoreceptor acting by energizing primary active transport must be present in cells
at substantially higher concentrations (0.2 mol m—3) than the phytochrome (0.1 mmol m~3) or
plasmalemma-associated flavoprotein (1 mmol m—3) pigments (cf. Raven 1981). The stentorin
concentration in Stentor coeruleus is, in fact, at the lower end of the range of concentrations found
for photosynthetic pigments in oxygen-evolving organisms (table 1 of Raven et al. 1979). It is
accordingly likely that photoperception by energizing primary active transport requires as a
necessary (but not a sufficient) condition that the cells be almost as densely pigmented as
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phototrophic cells are. Pigments whose primary functions are the harvesting and transduction
oflight energy for growth of phototrophs also have an important informational role in regulating
behaviour and metabolism (Raven 1981; Stoeckenius & Bogomolni 1982).

Turning to the more plausible mechanism (for photoreceptors present at relatively low
concentrations in the cell) of the regulation of active or passive mediated fluxes, the maximum
specific reaction rates range from 10%-10% s~ (primary active transport of protons or chloride
ions), to 10* s~1 (secondary active transport) to 10108 s~ (mediated passive uniport) (Raven
1980; Raven & Smith 1980). The specific reaction rates for mediated passive uniport of 107 s~1
(calcium (Reuter 1983)) and 108 s~ (sodium (Hille 1970)) are close to the limits imposed by
the rate of collision of ions with the uniporter from the experimental ion concentrations used
(Lauger 1973). Regulation of such porters could achieve very substantial amplification of the
photon-induced change in the photoreceptor: the ultimate would be a single molecule of, for
example, phytochrome associated with a passive uniporter that had a specific reaction rate of
0 s~! when phytochrome was in the P, form but had a specific reaction rate of 108 s~ when
phytochrone was in the Py form (assuming that the ion concentration were in excess of
100 mol m~3 to prevent collision limitation!). Even a modest uniporter specific reaction rate of
103571 for Py-activated uniporters present at the same density as phytochrome (0.33 nmol
m~2) would give an ion flux of 330 nmol m—2 s~1, which (if the ion were the proton) would be
greatly in excess of the minimum leakage plus slippage flux of 10-20 nmol m~—2 s~ (see above),
and not much less than the maximum proton recirculation flux of 1 pmol m—2s-1. With a
specific photon absorption rate by phytochrome of 0.025 s=1 with an incident photon flux
density of 1 pmol m~2s~1, only 40s would be needed to convert all the P, to Py, and thus
activate all the uniporters (cf. Raven 1981). The magnitude of such mediated uniport (down-
hill) influxes is such that they would have large electrical effects (depolarized potential differ-
ence; increased conductance), which could be part of the transduction process. More specific
effects result from the effects of the net ion fluxes on the intracellular free calcium and proton
concentrations (cf. the much lower ‘normal’ bidirectional calcium fluxes at the plant cell
plasmalemma (Macklon & Sim 1981)).

For protons, the net passive influx of 330 nmol m~2s-1, with a 500 nm thick layer of cytosol
and a proton buffer capacity of 10 mol proton m—* (pH)~! would give a pH change in the
cytosol at 0.066 pH s~, by no means negligible in terms of the ‘permitted’ change in cytosol
pH of perhaps 1 pH (Smith & Raven 1979). An analogous calculation for calcium would, with
a calcium buffer capacity of 10 mmol calcium m—2 (pCa)~! m~1, yield the same rate of change as
for protons, i.e. 0.066 pCa s~ (cf. Raven 1977). While there are homeostatic mechanisms for
pH and pCa (both normally about 7.0) in plant cytosol in addition to ‘passive buffering’, and
(as a more temporally pressing matter) some ionic countermovements must occur in the face
of a postulated calcium influx of 330 nmol m~2s~1, which, if unbalanced, would give a cell
depolarization rate of 3.3 V s~1, modulation of passive uniport by photoreceptors could yield
significant electrical and cytosol activity effects that could act as part of a signal transduction
sequence. There is evidence that both proton movements and calcium movements across the
plasmalemma areimportant early (tens of seconds or more) products of activation of phytochrome
and cryptochrome in plant cells (Marmé 1977; Raven 1981 ; Senger 1980), so that modulation
of active or passive fluxes of these ions could be a primary action site for these photoreceptors.

31-2
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(6) Temporal analysis of photoreceptor action in relation to membrane processes

The time course of photoreceptor action on solute fluxes is of clear importance in establishing
whether the changed solute fluxes are indeed the primary effect of photoreceptor activity.
Ideally, the time course of phototransformation of the pigment would be compared with the
time course of the change in solute flux, with the latter (for charged solutes) being measured by
microelectrode techniques for transplasmalemma electrical potential difference or conduc-
tance, or both, to overcome problems of extracellular diffusion lags in the chemical or radio-
chemical estimation of fluxes. To illustrate how complex such temporal analyses can be, even
under very favourable circumstances, I shall first consider a photoelectrical phenomenon of no
known photobehavioural or photomorphogenetic significance, i.e. the effect of high photon flux
densities of green light on the electrical potential difference at the plasmalemma of the marine
coenocytic algae Acetabularia mediterranea and A. crenata (Schilde 1968; Gradmann 1978). The
elegant analysis by Gradmann (1978) showed that green light inhibits the ATP-driven primary
active chloride influx of these cells with a lag of less than 40 ps. Even such a short lag is con-
sistent with the diffusion of a low molecular mass chemical messenger from the photoreceptor
to the chloride pump over a distance of up to 200 nm, provided that other reactions in the
transduction sequence are essentially instantaneous. We note that the slowest reaction in the
Acetabularia chloride pump reaction sequence has a rate constant in excess of 10 s~ when the
pump is working at its maximum rate (Gradmann 1978). Although it is likely that the green
light effect on the Acetabularia chloride pump does involve light absorption by a pump com-
ponent, or an adjacent membrane component, the possibility of a 200 nm diffusion path being
compatible with a lag of 70 ps between initiation of illumination and the first measurable
electrical response is salutary in the context of the precision of location ‘plasmalemma’ photo-
receptors by polarized light and microbeam experiments (Haupt 1982), and of the 500 nm
thickness of the cytosol of many vacuolate higher plant cells (Macklon 1975).

The shortest lag is an electrical response that can be related to a photobehavioural event
is the 1 ms lag between blue light irradiation and a calcium-dependent transcellular
electrical potential difference in the chlorophycean flagellate Haematococcus pluvialis (Litvin
et al. 1978). This electrical effect appears to be an essential part of the organism’s phototactic
response mechanism (cf. Raven 1981). The 1 ms lag is consistent with a diffusion distance
inside the cell of 2.8 pum, i.e. a significant fraction of the cell radius and 14 times the diameter of
the flagella axes. We note that the total time from ‘light on’ to the peak electrical potential
difference, i.e. about 5 ms at saturating light, is very short compared with the 5 s half-time for
the flavoprotein-sensitized reduction of cytochrome & in eukaryote plasmalemma, which may
be a part of the cryptochrome reaction (Brain et al. 1977). Although such a slow cytochrome
reduction might be a part of the reaction sequence for the cryptochrome effect on electrical
potential difference in Phaseolus vulgaris hypocotyls (1-5 s lag time (Hartmann & Schmid 1980))
or Onoclea sensibilis protonemata (10 s or more (Racusen & Cooke 1982)), the involvement of the
much slower (half time of 35 s) reoxidation of the cytochrome by molecular oxygen (Brain et al.
1977) in the reaction sequence is dubious, particularly in view of reports of the absence of an
oxygen requirement for the induction (Gressel et al. 1973) or even the whole response (Kowallick &
Gaffron 1967) of certain cryptochrome effects.

The fastest reported phytochrome effect on electrical potential difference (4.5 s after initiation
of the red light treatment in Avena sativa coleoptiles (Newman 1981)) is slower than some effects
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of chloroplast-absorbed light on the plasmalemma electrical properties of Nitella translucens
(1-2 s (Vredenberg 1969)). Thus signals that have to pass from the thylakoid membrane,
through the ‘tight’ inner plastid envelope membrane and the ‘leaky’ outer plastid envelope
membrane, to the plasmalemma have no longer lag time in inducing electrical effects at the
plasmalemma than does phytochrome, which may be associated with the N (cytosol) side of
the plasmalemma. However, the delay in electrical response to light absorption by P, does not
necessarily imply a substantial diffusion path for a chemical messenger from photoreceptor to
porter, because the time taken for the P,~P;, conversion is by no means negligible in the context
of lags of seconds. Briggs & Fork (1969) showed that the half-time for the P—Py, conversion was
some 0.6 s (as was that for the P,~P, photoconversion). This temporal constraint does not
apply to reactions in which there is a direct transfer of excitation energy from P, to for example
a primary active transport porter (cf. the assumption made earlier that energization might
require the full P,-P,,—P, photocycle with, implicitly, a conformational mechanism of energy
transfer to a pump) ; however, the excitation energy transfer mechanism precludes the demon-
stration of phytochrome’s involvement by the criterion of red—far-red reversibility. It is signifi-
cant that in a number of cases the effect of red light on electrical phenomena, and not merely
their induction, can be reversed by far-red light, suggesting that the ion-transport effects are
reversibly regulated by the phytochrome system.

We may conclude that the temporal data available do not rule out a direct interaction of crypto-
chrome or phytochrome with mediated transport at the plasmalemma, but they do not exclude
the involvement of an intermediate between photoreceptor and porter that can diffuse over 1 pm
or more. We note that the vertebrate retinal rod, a much-studied photoreceptor system, seems
to have guanine nucleotide interconversions as the first part of the perception-transduction—
response sequence following light absorption by rhodopsin; calcium and calmodulin are in-
volved later, followed by a decrease in the sodium permeability of the plasmalemma (Miller
1981 ; Birge 1981). Here it seems (Birge 1981) that speed of response is sacrificed to precision,
i.e. to decreasing the likelihood of spurious signals, an interesting contrast to the much more
rapid response of the energy-transforming bacteriorhodopsin system (see §5).

Lest it be thought that this discussion of the temporal analysis of the interaction of photo-
receptors with transmembrane fluxes has ended on a pessimistic note, i.e. that the time course
of the effects of phytochrome or cryptochrome is such that the question of ‘direct’ or ‘indirect’
interaction of photoreceptor and porters cannot be resolved, it is important to point out that
there are other ways of approaching this problem. The most direct (but most technically de-
manding) would be the ‘classical’ extraction and reconstitution approach; here isolated and
purified membranes (and, if non-integral, photoreceptors) would be tested for the occurrence
of photoreceptor—porter coupling. Such experiments could show what components were needed
to obtain this coupling; even more convincing would be reconstitution experiments with
purified photoreceptor and porter in liposomes (Racker 1976). However, such experiments
cannot be conducted until we know a great deal more about cryptochrome and plasmalemma
porters in plants.

5. WHY MEMBRANES?

Finally, we may ask why membranes should be involved in photoperception in plants: is it
‘evolutionary inertia’ or can some selective advantage be construed in membrane-associated
photoperception in extant plants? Tackling the ‘evolutionary inertia’ question first, a plausible
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evolutionary speculation has been presented by Carlile (1980; cf. Seliger & McElroy 1965;
Presti & Delbriick 1978). Early organisms would have been chemoorganotrophs, growing on
abiologically photosynthesized organic compounds. As burgeoning life used these organic
compounds, the increasingly thin primeval soup might mean that motile organisms with
chemotaxis would be at a selective advantage: the chemoreceptors were probably in the plasma-
lemma of these organisms (cf. Lengeler 1982). Eventually the evolution of (biological) photo-
synthesis overcame this primeval energy crisis, with membrane-associated mechanisms for
light-energy transduction (Raven & Smith 1981). Carlile (1980) points out that the association
of the membrane-associated photosynthetic photoreceptor with the pre-existing chemotactic
system, with its chemosensory apparatus in the plasmalemma, could have led to a phototactic
system, with a selective advantage in terms of optimizing the position of the organism in the
aquatic photon flux density gradient. This optimization is construed by Carlile (1980) in photo-
synthetic terms, although it is also possible that an involvement of the photoreactivation
system (Presti & Delbriick 1978) as a photoreceptor for phototaxis related to the avoidance of
high photon flux densities of u.v. could have occurred. At all events, the intervening 2 x 10° or
so years would seem to have given ample time for evolutionary change of the location of photo-
receptors, particularly if the mechanism did not involve net storage of light energy as chemical
energy (note that even bioluminescence, which deals in the production of blue quanta of some
260 kJ mol-1 energy content, is not membrane-associated (Hastings 1975)).

Having bought forward evidence that phytochrome and cryptochrome do not operate via
net membrane-associated energy storage (§44), it is worth considering what selective pressures
might be involved in keeping a photoreceptor system associated with membranes. Birge (1981)
and Miller (1981) have recently discussed the attributes of photosensory systems: it would
appear that the maintenance of a high signal: noise ratio and the necessary amplification of the
signal in the transduction mechanism militates against extremely rapid responses in photo-
sensory systems. We note that the very rapid effect of green light on the Acetabularia chloride
pump does not involve amplification, or a large signal:noise ratio (Schilde 1968; Gradmann
1978). I have already shown that large amplification factors are needed to get good signal: noise
ratios for photosensory proton fluxes: the same is true for photosensory calcium fluxes when there
are large net calcium fluxes associated with intracellular CaCOj precipitation (Raven 1981).
Overall, unless ‘non-nutrient’ solute fluxes are being regulated, there would not seem to be
any advantage in using transmembrane fluxes as part of a photosensory mechanism in terms of
maximizing the signal:noise ratio.

Granted the intrinsic slowness of some photoreceptor events (e.g. phytochrome phototrans-
formations), are there situations in which the rapid response (milliseconds rather than seconds)
of some photoreceptors can be of advantage to the organism? A good case (see above) is the
rapid (5 ms or less) photoelectric response, related to phototaxis, in Haematococcus pluvialis
(Litvin ef al. 1978). An important potential ‘use’ of phototaxis of motile microorganisms, and
of plastids in non-motile plants as well as of leaf photonasty in terrestrial plants, is the avoidance
of photoinhibition of photosynthesis (Samuelsson & Richardson 1982 ; Bjérkman & Powles 1981 ;
Powles & Bjorkman 1981; cf. Nultsch ef al. 1981). In Oxalis oregana a very good case has been
made out for cryptochrome-mediated photonasty in reducing light interception by leaves, and
hence in reducing photoinhibition. When a sunfleck (photon flux density 1600 pmol m—2 s-1)
replaces the normal diffuse forest-floor visible radiation (4 pmol m—2s-1), leaf folding can be
completed in 6 min, in which time very little photoinhibition has occurred (Bjérkman &
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Powles 1981 ; Powles & Bjorkman 1981). However, the difference between a lag of milliseconds
and one of seconds before the arrival of a sunfleck is translated into detectable leaf movement
would not seem to be of great moment in this situation. This is true & fortiori of the phototaxis
of motile phototrophs. Samuelsson & Richardson (1982) showed that the accumulation of
Amphidinium carterae in a particular region of a photon flux density gradient could be interpreted
in terms of maximizing photosynthesis while preventing photoinhibition, which can set in at
80 pmol m~2 s—1 in this shade-adapted dinoflagellate. However, even with a swimming velocity
of 0.5 mm s~1, and a large (for open water (Spence 1981)) vertical attenuation coefficient of
visible radiation of 0.5 m~1, it would take over half an hour for a dinophyte in stratified water
to swim from a definitely photoinhibitory photon flux density of 80 pmol m=2s~! to a non-
photoinhibitory 40 pmol m—2 s~1, again making the difference between millisecond and second
lags seem irrelevant. For photomorphogenetic rather than photobehavioural responses an even
stronger case can be made out for the irrelevance of reducing lag times to below a second.

In conclusion, it is not easy to see any overwhelming advantage in having photoreceptors in
plants associated with membranes: their messages are not generally destined for rapid trans-
mission by action potentials, because plants with rapid responses to environmental changes
(e.g. carnivores like Dionaca) wisely rely on touch rather than shading (Bentrup 1979), thus
avoiding the embarrassment of closing their traps on shadows. The hypothesis that photo-
receptor action is membrane-associated has generated many useful ideas and experimental
results; however, one cannot help feeling that it is a cruel irony that makes the first measureable
effects of photoreceptor activity on membrane activity faster than the plant (to our imperfect
perception) ‘needs’, yet not fast enough to avoid ambiguity as to the interaction (direct or in-
direct) between photoreceptor and porter.

Dr K. Richardson has contributed vigorous discussion of the material in this article. Pro-
fessor W. Riidiger has provided important counsel on the possibility of phytochrome’s acting
as an antenna (sensitizer) in vivo.
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